Qual e o efeito da interação da radiação com a matéria que e responsável pela formação da imagem radiográfica?

Em um tubo de raios X, existem dois eletrodos:

🍀 Catodo: polo negativo, onde pelo efeito termiônico (gerado pela passagem de uma alta corrente elétrica e uma baixa diferença de potencial), temos uma nuvem eletrônica gerada nas camadas mais externas do fio do filamento, que está pronto para ser "acelerado" em direção ao alvo;

🍀 Anodo: polo positivo, que contém o alvo. Normalmente projetado em cobre, com a região de alvo em tungstênio (material metálico com maior resistência a altas temperaturas, além de apresentar boa condutividade térmica e alto número atômico, o que contribui para uma melhor qualidade do feixe de raios X), é do tipo rotatório (com giro variando de 3.000 a 10.000 rpm). Apresenta grande dissipação de calor (lembrando que apenas 1% de toda energia cinética depositada no alvo é convertida em radiação X, o restante é transformada em energia térmica ou é dissipado na forma de calor, em uma pequena área denominada de ponto focal). O alvo rotatório faz com que o feixe de elétrons incida em vários pontos, aumentando a vida útil dele.

Para que ocorra o processo de deslocamento dos elétrons gerados pelo efeito termoiônico no catodo em direção ao anodo, haverá uma diferença de potencial (ddp), que é aplicada entre os dois eletrodos. Essa diferença de potencial é próximo ao kV selecionado no painel do console do equipamento (valor de técnica para estudo de determinada área anatômica).

Fatores interessantes:

♣ Os elétrons acelerados em curto trajeto entre catodo e anodo chegam próximos a velocidade da luz (0,99c, onde c é a velocidade da luz). Com isso, existem efeitos relativísticos acontecendo dentro do tubo de raios X;

♣ Com a utilização frequente do tubo, parte do material do alvo começa a evaporar e a criar uma capa metálica interna na ampola. Este novo "eletrodo" começa a gerar uma diferença menor de potencial entre catodo e anodo (reduzindo o valor de kV selecionado no painel do equipamento) e correntes de fuga. Com isso, haverá falhas de tubo. Atualmente, tubos de raios X são feitos parcial ou totalmente em metal para evitar este processo e, consequentemente, falhas;

♣ Dentro de uma ampola de raios X, existem dois tipos de corrente: corrente de filamento (responsável pelo efeito termiônico e por controlar também a corrente de tubo), que apresenta um alto valor e uma baixa ddp; e a corrente de tubo, responsável pela produção da radiação conforme a necessidade da projeção radiográfica;

♣ Junto à região de catodo, temos uma capa focalizadora, que é responsável por fazer com que o feixe de elétrons não sofra um processo de espalhamento (repulsão eletrostática devido aos elétrons apresentarem a mesma carga negativa);

♣ Tubos de raios X de alta capacidade apresentam uma liga de tungstênio e rênio (maior resistência mecânica para suportar os estresses da alta rotação e dilatação/contração térmica);

♣ Tubos de raios X de alta capacidade também podem apresentar a região de alvo constituída de molibdênio e grafite e sobre estes dois materiais, uma camada de tungstênio funcionando como alvo para a interação do feixe de elétrons para a produção da radiação X;

♣ As funções do anodo são: condução elétrica, dissipação de calor e contenção da região de alvo para a produção da radiação eletromagnética;

♣ Catodo apresenta dois filamentos, responsáveis pelo foco fino e foco grosso. Porém, quanto menor a área focal (foco fino), menor é o borramento geométrico e assim, maior é a dissipação de calor em um pequeno ponto.

Foi no ano de 1922 que Arthur Holly Compton, após realizar alguns estudos sobre a interação radiação-matéria, percebeu que quando um feixe de raios X incidia sobre um alvo de carbono, sofria um espalhamento. Inicialmente, Compton não percebeu nada de errado, pois suas medidas indicavam que o feixe espalhado tinha frequência diferente do feixe incidente logo após atravessar o alvo.

De acordo com a teoria ondulatória, tal conceito era dado como certo, pois a frequência de uma onda não é alterada por nenhum fenômeno que ocorre com ela, sendo característica da fonte que a produz. Mas o que se constatou, através da experimentação, foi que a frequência dos raios X espalhados era sempre menor do que a frequência dos raios X incidentes, dependendo do ângulo de desvio. A figura abaixo nos mostra o esquema da ocorrência desse fenômeno, conhecido como Efeito Compton.

Para explicar o sucedido, Compton inspirou-se na abordagem de Einstein, ou seja, ele interpretou os raios X como sendo feixes de partículas e a interação como sendo uma colisão de partículas. A energia do fóton incidente, de acordo com Einstein e Planck, seria h.f; e o fóton espalhado teria elétron, em respeito à lei da conservação da energia.

Não pare agora... Tem mais depois da publicidade ;)

A abordagem funcionou perfeitamente, mas Compton foi ainda mais longe. Ele investigou também a interação do ponto de vista da lei da conservação do momento linear. Experimentalmente, verificou que essa lei valia para diversos ângulos de espalhamento, desde que o momento linear do fóton fosse definido como

Onde:

  • c – é a velocidade da luz no vácuo
  • h – é a constante de Planck
  • λ – é o comprimento de onda da radiação

O inventor da Câmara de Nuvens (Charles Wilson) obteve experimentalmente as trajetórias dos fótons e dos elétrons espalhados, em colaboração com Compton. Duas características são notáveis na expressão acima: uma é a própria redefinição do momento linear, que não pode ser escrito como m.v, porque o fóton não tem massa; e a outra característica que pode ser observada é o estabelecimento de uma clara associação entre uma grandeza típica de corpúsculos, isto é, a matéria, e uma grandeza caracteristicamente ondulatória.

Compton ainda desenvolveu um método que provava que o fóton e o elétron eram espalhados simultaneamente, o que impedia explicações envolvendo absorção e posterior emissão de radiação.


Por Domiciano Marques
Graduado em Física

Qual e o efeito da interação da radiação com a matéria que e responsável pela formação da imagem radiográfica?

Efeito Compton é a diminuição de energia (aumento de comprimento de onda) de um fóton de raios X ou de raio gama, quando ele interage com a matéria.

Quais os efeitos da interação da radiação com a matéria?

Sob o ponto de vista físico, as radiações ao interagir com um material, podem nele provocar excitação atômica ou molecular, ionização ou ativação do núcleo. Interação onde elétrons são deslocados de seus orbitais de equilíbrio e, ao retornarem, emitem a energia excedente sob a forma de luz ou raios X característicos.

Qual e o efeito da interação com a matéria que forma a imagem?

O Efeito Fotoelétrico O processo de interação entre um fóton e um elétron fortemente ligado a um átomo é chamado efeito fotoelétrico. Nesta interação, o fóton é completamente absorvido e o elétron orbital é ejetado com energia cinética E. Este elétron orbital ejetado é chamado fotoelétron.

Como se dá o processo de formação de imagem radiográfica?

O processo de produção de uma imagem radiológica é composto basicamente por uma fonte geradora de radiação, o objeto de irradiação (corpo do paciente) e um sistema de registro do resultado da interação do feixe de fótons com o corpo. construídas com um foco ou com dois.

Toplist

Última postagem

Tag